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Abstract. The congestion transition triggered by multiple walkers walking along the shortest path on
complex networks is numerically investigated. These networks are composed of nodes that have a finite
capacity in analogy to the buffer memory of a computer. It is found that a transition from free-flow
phase to congestion phase occurs at a critical walker density f., which varies for complex networks with
different topological structures. The dynamic pictures of congestion for networks with different topological
structures show that congestion on scale-free networks is a percolation process of congestion clusters, while
the dynamics of congestion transition on non-scale-free networks is mainly a process of nucleation.

PACS. 89.75.-k Complex systems — 87.23.Ge Dynamics of social systems — 89.75.Fb Structures and

organization in complex systems

1 Introduction

Complex networks are an essential part of modern society.
A large number of natural and artificial systems, rang-
ing from large communication system (the Internet, the
WWW), transportation infrastructures (highway and air-
line routes), biological systems (gene and protein inter-
action networks) to social interaction networks [1-3], can
be described by concepts of complex networks consisting
of nodes connected by links. In the past few years it has
been observed that a variety of real-world networks ex-
hibit characteristic topologies which deviate from random
networks [4-7].

Transport of matter or information is a fundamental
function for many real networks such as vehicular flow in a
network of highways and delivery of data packets between
nodes with limited capacity on a communication network
such as the Internet. The model of the traffic-flow on a
regular lattice (square lattice, Cayley tree etc.) [8] has
been constructed based on routing algorithms of computer
networks and extended to networks with inhomogeneous
structure such as scale-free networks [9-11]. A different
model considered the transport process as a number of
walkers (or particles) moving in the network through its
links without the consideration of node capacity, which
is equivalent to a single particle in the network [12]. Re-
cently the interaction between walkers was introduced [13]
by assuming that each node can be occupied at most by
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one walker and the walkers move randomly on the net-
work, and some analytical expressions for dynamical quan-
tities of interest were obtained. However, this model is too
highly idealized because in real communication networks,
information packets do not travel randomly, and the ca-
pacity of each node is neither homogeneous, nor limited
to one packet [9].

2 Model

We model the transport on networks as a number of walk-
ers walking on networks composed of nodes that have a
finite capacity ¢; [9], which is defined as the maximal num-
ber of walkers (packets in communication networks) the
ith node can accommodate at any time, in analogy to the
buffer memory of a computer. Each walker selects a ran-
dom destination among all nodes in the network and walks
along the shortest path from the current position to the
destination. The walker density f is defined as the ratio of
the number of walkers n to the total capacity Cio: of the
network, i.e. f = n/Cio, where Cyoy = >, ¢;. The pur-
pose of the present study is to see how the walker density
affects the dynamics of flow and congestion on complex
networks, and to draw the dynamic pictures of congestion
for networks with different topological structures.

The simulations were carried out on scale-free net-
works, regular networks, small-world networks, and ran-
dom networks. We appoint the network a total capacity
and distribute them to each node on the network (we as-
sumed that the total capacity is always multiple times of
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Fig. 1. (Color online) MWT as a function of walker density f for BA scale-free networks with (a) different average degree

(k) = 2 ~ 12; (b) different total capacity Cior = (1~ 5) >, k.

the total degree, such that Cyor = 1), k;, where [ is an in-
teger and k; is the degree of node 7). The capacity of node i
for the maximum number of walkers to reside is propor-
tional to [[; = k;/ >_; k;, which is also the probability for
a walker to initially reside in node i. After an initial dis-
tribution of n walkers on the network, each walker begins
to randomly choose a node as its destination, then walks
along one of the shortest paths from the current node to
the destination. Each time step corresponds to one step
along the shortest path the walker tries to walk. If the node
that a walker tries to enter is full, the walker has to stop
and reside in the current node at which it stays and wait to
take another try till the next time step. Whereas if a node
is unfilled and there are too many walkers approaching at
the same time, then some are chosen randomly to enter
the node and the others have to stop and stay in their cor-
responding current nodes. Once a walker has reached its
destination, it chooses another destination at random and
starts another journey. In our model, the walker density
is kept constant during the walking process. To describe
the degree of congestion for a network, we introduce a pa-
rameter, mean waiting time (MWT), which is defined as
the average number of steps that a walker has to stay in
its current node over the total number of simulation time
steps tior, that is MWT = (tyaiting/ttot)-

3 Congestion on BA scale-free networks

A scale-free network is generated on the basis of the algo-
rithm proposed by Barabési and Albert (BA model) [6].
Congestion on a BA scale-free network can be better un-
derstood if the simulations with different average degree
(k) and total capacity Cir (N = 1000, (k) = 6 and
Ciot = SZi k; in the following simulations unless spec-
ified) are carried out. As shown in Figure 1, when the
walker density is low, the MWT is very small, correspond-
ing to a free flow phase. As the walker density on the net-
work increases to a critical value f., MWT experiences
a sudden jump, indicating a transition from a free-flow
phase to a congestion phase of the system. The critical
density f. can be regarded as the effective utility of the

The number of time step is 10 000.

network capacity, which describes the maximal number of
walkers a network can tolerate, or equivalently, how much
redundancy of capacity we have to set aside in order to
ensure a free flow on the network. It is found that the
effective utility of network capacity on a scale-free net-
work is very low without introducing new mechanisms to
avoid congestion. For example, to guarantee the free flow
on a scale-free network with N = 1000 and (k) = 6, 80%
of the total capacity has to be set aside as redundancy.
To shift up the critical point f., one sees an increase of
fe on scale-free networks when the average degree (k) in-
creases (Fig. la). But f. is not sensitive to variations of
the total capacity Cio: (Fig. 1b), which means that we
can improve the effective utility of network capacity by
adding more links to the network. But as can be seen
from Figure la, this method can only be effectively used
on relatively sparse networks as f. begins to saturate when
(k) > 6, in analogy to the phenomenon of diminishing
marginal utility in the field of economics.

Let’s go deeper into what happens when the congestion
occurs on complex networks. Figure 2a shows the number
of congested nodes (the filled nodes) Neong, caused by the
initial distribution of walkers on a BA scale-free network
with N = 1000 and (k) = 6. It is found that even if the
walker density rises up to 0.5, there are few congested
nodes on the network. But once the walkers begin to walk
along the shortest path on such a network, the congestion
begins to occur at about f. = 0.2, as shown in Figure 1.
This implies that the congestion on networks is not trig-
gered by the initial distribution of walkers, but takes place
during the process of multiple walkers walking along the
shortest path between nodes. Figures 2b and 2c¢ describe
the dynamic process of congestion by plotting the num-
ber of congested nodes Neong (Fig. 2b) and the number of
waiting walkers nyaiting (Fig. 2¢) against the number of
time steps respectively. It is indicated in Figure 2 that as
long as the worker density is below the critical value (for a
BA scale-free network the critical value is about 0.2), few
congested nodes can be found and the walkers can flow
freely on the network. When the walker density reaches
and goes beyond the critical value f., the walkers which
initially walk freely are quickly frozen in nodes by the
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Fig. 2. (Color online) (a) Number of congested nodes caused by an initial distribution of walkers, (b) number of congested
nodes versus time step and (c) normalized number of waiting walkers versus time step with walker densities ranging from 0.16
to 0.23 for a BA scale-free network, where n;o is the total number of the walkers in the network, (d) using (Ncong/N) as the
order parameter instead of MWT, also leads to a transition at the same point. The number of time step is 10 000.

sharply increasing number of congested nodes. Although
the number of congested nodes covers a small percentage
at the critical point, it can still lead to a deadlock of the
whole system, as shown by a transition from the free-flow
phase to the congestion phase in Figure 2d.

4 Dependence of congestion on network
topology

The influence of topology on the network congestion
was also examined using a regular network, small-world
network and random network constructed by WS algo-
rithm [5] with a rewired possibility set as 0, 0.01 and 1
respectively. It is found, as shown in Figure 3, that the
three kinds of networks all have their corresponding crit-
ical value of walker density f., at which the congestion
transition takes place in a similar way as on the scale-free
networks we discussed above. Figure 3 also shows that the
critical walker density of a random network is close to that
of a scale-free network, while on regular networks f,. is far
above that on the other networks. This phenomenon may
be due to the fact that the regular network has a uni-
form distribution of degree k and its average length of the
shortest path is much longer than that of the other kinds of
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Fig. 3. (Color online) Mean waiting time versus walker density
on the four networks with different topologies using shortest-
path and random walk (inset) strategies. The number of time
steps is 10 000.

networks. These make walkers distribute on regular net-
works more dispersively and more homogeneously than
that of the other kinds of networks, and no bottle neck ef-
fect will be involved, leading to a network more tolerant to
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Fig. 4. (Color online) Number of congestion clusters, the average size and the largest size of congestion cluster versus time step
for complex networks with different topologies (N = 1000, (k) = 6, and Cior = 3, k). Schematic diagrams of how congested
nodes develop into connected giant congestion clusters are also shown. (a) Scale-free network (walker density f = 0.20). (b)
Random network (f = 0.17). (¢) Small-world network (f = 0.06) (d) Regular network (f = 0.34).

congestion. It is also found that a small-world network is
much more prone to induce congestion. The reason is that
a small-world network can be viewed as a homogeneous
network, in which all nodes have approximately the same
number of links. On one hand each node is assigned almost
the same capacity according to our capacity distribution
strategy, but on the other hand, because of the rewired me-
chanics of WS model, a little fraction of the nodes on the
small world network act as the betweenness center which
most of the shortest path must pass. As the bottle-neck
of the network, these nodes are prevalently occupied with
walkers, making the network more prone to congestion.
The results obtained here are consistent with the compar-
ison between random and scale-free networks [15] but in
more general it is the regular network that is the most
resistant to jamming. For a comparison between differ-
ent walking strategies, we also performed a random walk
on complex networks with different topologies, which is
shown in the inset of Figure 3. It is found that the prop-
erties of the networks do not depend on topologies and
no phase transition occurs by random walk strategy, in-
dicating that a random walk strategy is more tolerant to
network congestion, but it would take a walker much more
time to reach its destination compared with the shortest-
path approach [3,14].

5 Dynamic pictures of congestion

It is interesting to investigate the dynamics of conges-
tion transition by examining the clusters of connected
congested nodes. The evolution of congestion clusters on
the four kinds of networks are studied in the vicinity of
the critical walker density, as shown in Figure 4, where
Nel, Means the number of congestion cluster on the net-
work, Sg.e is defined as the average size of clusters, and
Simaz 18 the size of the largest cluster. Before the net-
work congestion occurs on a scale-free network, the num-
ber of congestion clusters increases with time, whereas
the size of these congestion clusters remains very small
and invariant. When the number of congestion clusters
increases up to the critical value, all these small clusters
experience a percolation transition and form a giant con-
nected congestion cluster, which continues to grow as its
neighboring nodes become congested and join the con-
gested subnetwork. The congestion on the other three net-
works (Figs. 4b, 4c and 4d) starts from a small congestion
cluster acting as the only nucleus, which becomes larger
and larger as more and more congested nodes are con-
nected to it once they are created, until a stable giant
congested subnetwork is formed. This leads to a steady
increase of both Sy,e and Sy, while keeping n.j, at a
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very low level. On regular networks, sometimes splitting
of a congested subnetwork into two can be found (inset
of Fig. 4d) at the critical point. When the walker density
is increased above f., the diversity of dynamical features
among random, small-world and regular networks, such
as congested subnetworks of different size isolated from
each other developing from different nuclei, mergence of
two clusters of different size, and the final size distribu-
tion of the isolated congested subnetworks will appear to
accompany the process of nucleation [16], but the perco-
lation /nucleation classification of dynamic properties for
scale-free /non-scale-free networks remain robust against
the variation of walker density above f.. The different na-
ture of congestion transition between scale-free networks
and other networks lies in their different degree distribu-
tion. Scale-free networks possess a highly heterogeneous
degree distribution, in which hubs, or the nodes with large
degree, play a role of reservoir against congestion [17].
During the process of multiple walkers walking along the
shortest path between nodes, those nodes with small de-
gree, or with small capacity, are congested first and form
into many isolated small congested clusters. Only when
most of neighboring nodes of a hub are congested can the
hub fail, which leads to a giant percolated congested clus-
ter, and eventually the breakdown of the network. This
phenomenon is also reminiscent of the other cascade mod-
els such as Watts model [18], where the decisions of inter-
acting agents (nodes) are determined by the actions of
their neighbors according to a simple threshold rule, or
the Motter-Lai model [11,19], where the congested nodes
are removed permanently. In these models, the failure of
a single important node on a scale-free network may trig-
ger a global cascade. But it rarely happens for nodes with
small degree. Unlike scale-free networks, other three kinds
of networks process a relatively homogeneous degree dis-
tribution free from hubs with buffer mechanism. So any
single congested node may act as a nuclei, triggering an
avalanche of congestion and as a result breaking down
the whole network. The different dynamics of congestion
for different networks implies that the network topology
should be taken into consideration in the design of strate-
gies to avoid or alleviate network congestion.

6 Conclusion

In summary we have investigated the dynamics of conges-
tion transition triggered by multiple walkers walking along
the shortest path on complex networks. The congestion
transition on scale-free networks is a percolation process
of congestion clusters, while the dynamics of congestion
transition on random, small-world and regular networks
is mainly a process of nucleation.

It is also found that increasing the network capacity
for transporting a large number of physical quantities
along the shortest path is not in every aspect an efficient
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strategy. One should set aside sufficient redundancy of ca-
pacity in the design, otherwise the network would be prone
to congestion. To improve the effective utility of network
capacity, adding more links to a network seems to be a
good approach, but this is always expensive in real-life
networks and only applicable to sparse networks, and thus
it is not practical. The effective utility of the networks ca-
pacity can also be improved through designing a more
efficient walk strategy. Random walk looks more tolerant
to network congestion than shortest-path walk strategy,
but more time has to be spent [9].
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